On monotone hull operations

Marek Balcerzak, Tomasz Filipczak

Institute of Mathematics, Technical University of Łódź, ul. Wólczańska 215, 93-005 Łódź, Poland

– Typeset by $\ensuremath{\mathsf{FoilT}}\xspace{T} EX$ –

Definitions and notation

Fix a triple (X, S, J) where $X \neq \emptyset$, $S \subseteq \mathcal{P}(X)$ is a σ -algebra and $J \subseteq S$ is a σ -ideal. Such a triple will be called a **measurable space with negligibles**.

For $A, B \subseteq X$ we write $A \subseteq_{\mathcal{I}} B$ whenever $A \setminus B \in \mathcal{I}$. Symbol \triangle denotes symmetric difference of sets.

We say that $H \in S$ is a **hull** (with respect to (X, S, \mathcal{I})) of a set $A \subseteq X$ if H contains A and for every $G \in S$ containing A, we have $H \subseteq_{\mathcal{I}} G$.

If additionally, $H \in \mathcal{H}$ (for a given family $\mathcal{H} \subseteq S$), we say that H is an \mathcal{H} -hull of A. Observe that every hull of $A \in \mathcal{I}$ is in \mathcal{I} .

If $\mathcal{A} \subseteq \mathcal{P}(X)$ and $\mathcal{H} \subseteq S$, we say that $\varphi \colon \mathcal{A} \to \mathcal{H}$ is an \mathcal{H} -hull operation on \mathcal{A} whenever $\varphi(A)$ is an \mathcal{H} -hull of A for each $A \in \mathcal{A}$. If $\varphi(A) \subseteq \varphi(B)$ for any $A, B \in \mathcal{A}$ with $A \subseteq B$, then φ is called **monotone**.

Our aim is to generalize some results of **Elekes and Máthé (2009)** on monotone Borel hull operations with respect to $(\mathbb{R}, \mathcal{L}, \mathcal{N})$ where \mathcal{L} stands for the σ -algebra of Lebesgue measurable sets and \mathcal{N} denotes the σ -ideal of Lebesgue null sets.

They proved in particular that the existence of a monotone $Borel(\mathbb{R})$ -hull operation on $\mathcal{P}(\mathbb{R})$ (or on \mathcal{L} , or on \mathcal{N}) is independent of ZFC.

We will extend their ideas to the category case (dealing with $(\mathbb{R}, \mathcal{K}, \mathcal{M})$ where \mathcal{K} stands for the σ -algebra of Baire sets and \mathcal{M} denotes the σ -ideal of meager sets.

We will also work with two measurable spaces with negligibles associated with the product σ -ideals $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$ on \mathbb{R}^2 .

Recall some cardinals associated with ideals. Fix an ideal $\mathcal{I} \subseteq \mathcal{P}(X)$ with $\bigcup \mathcal{I} \notin \mathcal{I}$. Define:

•
$$\operatorname{non}(\mathfrak{I}) := \min\{|A| : A \subseteq X, A \notin \mathfrak{I}\};\$$

•
$$\operatorname{add}(\mathfrak{I}) := \min\{|\mathcal{F}| \colon \mathcal{F} \subseteq \mathfrak{I}, \bigcup \mathcal{F} \notin \mathfrak{I}\};\$$

• $\operatorname{cof}(\mathfrak{I}) := \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathfrak{I}, \ (\forall A \in \mathfrak{I})(\exists B \in \mathcal{F})A \subseteq B\}.$

Note that $\operatorname{add}(\mathfrak{I}) \leq \operatorname{cof}(\mathfrak{I})$. Every family $\mathfrak{D} \subseteq \mathfrak{I}$ such that

$$(\forall A \in \mathcal{I})(\exists B \in \mathcal{D})A \subseteq B$$

will be called **cofinal** in \mathfrak{I} , or a **base** of \mathfrak{I} . Clearly, every base \mathfrak{D} of \mathfrak{I} generates a \mathfrak{D} -hull operation $\varphi \colon \mathfrak{I} \to \mathfrak{D}$.

If $\mathcal{E} \subseteq \mathcal{P}(X)$ we denote by $\mathcal{E} \bigtriangleup \mathcal{I}$ the family of all sets of the form $E \bigtriangleup A$ where $E \in \mathcal{E}$ and $A \in \mathcal{I}$.

If \mathcal{E} is a σ -algebra and \mathcal{I} is a σ -ideal then $\mathcal{E} \bigtriangleup \mathcal{I}$ is the smallest σ -algebra containing $\mathcal{E} \cup \mathcal{I}$.

For $\mathcal{H} \subseteq \mathcal{P}(X)$, we denote by \mathcal{H}_c , \mathcal{H}_σ , \mathcal{H}_δ , respectively, the families consisting of all complements, countable unions, and countable intersections of sets from \mathcal{H} . We can use these operations more than once, so we consider families of type $\mathcal{H}_{\sigma\delta\sigma}$, etc.

In the sequel, the σ -algebra of Borel sets in \mathbb{R}^n will be denoted by $\mathcal{B}(\mathbb{R}^n)$ or briefly by \mathcal{B} , if it is clear in which space we work.

We denote by $\mathcal{F}_{\sigma} \sqcup \mathcal{G}_{\delta}$ the family of all subsets of a given space that can be expressed in the form $A \cup B$ where A is of type F_{σ} and B is of type G_{δ} .

Now, we will recall some facts concerning $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$. Assume that $\mathfrak{I}, \mathfrak{J} \subseteq \mathcal{P}(\mathbb{R})$ are σ -ideals. For $A \subseteq \mathbb{R}^2$ and $x \in \mathbb{R}$ we put

 $A(x) := \{ y \in \mathbb{R} \colon (x, y) \in A \}, x$ -section of A,

 $\pi_{\mathcal{J}}(A) := \{ x \in \mathbb{R} \colon A(x) \notin \mathcal{J} \}, \ \mathcal{J}$ -projection of A.

Then define a family

$$\mathfrak{I} \otimes \mathfrak{J} := \{ A \subseteq \mathbb{R}^2 \colon (\exists B \in \mathfrak{B}(\mathbb{R}^2)) (A \subseteq B \text{ and } \pi_{\mathfrak{J}}(B) \in \mathfrak{I}) \}$$

which forms a σ -ideal called the **Fubini product** of \mathfrak{I} and \mathfrak{J} . Note that $\mathfrak{I} \otimes \mathfrak{J}$, by the definition, possesses a base of Borel sets.

In particular, $\mathcal{N} \otimes \mathcal{N}$ and $\mathcal{M} \otimes \mathcal{M}$ coincide with the σ -ideals of Lebesgue null sets and of meager sets in \mathbb{R}^2 .

The mixed product σ -ideals $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$ are called the **Mendez** σ -ideals; see [Mendez, 1976].

Note that these σ -ideals are mutually incomparable (with respect to inclusion) and also incomparable with $\mathcal{M} \otimes \mathcal{M}$ and $\mathcal{N} \otimes \mathcal{N}$.

Fact 1 (folklore).

 $\operatorname{non}(\mathcal{M}\otimes\mathcal{N})=\max\{\operatorname{non}(\mathcal{M}),\operatorname{non}(\mathcal{N})\}=\operatorname{non}(\mathcal{N}\otimes\mathcal{M}).$

Fact 2. For each of the triples

 $(\mathbb{R},\mathcal{K},\mathcal{M}), \ \ (\mathbb{R}^2,\mathcal{B}\bigtriangleup(\mathcal{N}\otimes\mathcal{M}),\mathcal{N}\otimes\mathcal{M}), \ \ (\mathbb{R}^2,\mathcal{B}\bigtriangleup(\mathcal{M}\otimes\mathcal{N}),\mathcal{M}\otimes\mathcal{N})$

there exists a monotone S-hull operation on $\mathcal{P}(\mathbb{R})$ or $\mathcal{P}(\mathbb{R}^2)$, respectively, where S is the respective σ -algebra.

The same holds for $(\mathbb{R}, \mathcal{L}, \mathcal{N})$ which was proved by Elekes and Máthé.

In all those cases a role of S-hull can be played by the operator of closure $A \mapsto \overline{A}$ for the respective density-type topology.

Results

Question: Is there a monotone Borel hull (on a given σ -ideal, σ -algebra, or on $\mathcal{P}(\mathbb{R}^n)$)?

Our results will be proved with the use of methods analogous to those used by Elekes and Máthé.

First we deal with monotone Borel hull operations on σ -ideals. Recall the negative result by Elekes and Máthé.

Theorem 3. In a model obtained by adding ω_2 Cohen reals to a model satisfying the Continuum Hypothesis (CH) there is no monotone Borel hull operation on \mathbb{N} .

For the category we have the following analogous theorem. **Theorem 4.** In a model obtained by adding ω_2 random reals to a model satisfying CH there is no monotone Borel hull operation on \mathcal{M} .

Proof. In the considered model (it is due to Kunen) we have $non(\mathcal{M}) = \omega_2 = 2^{\omega}$. Also in this model there is no strictly increasing (with respect to inclusion) sequence of Borel subsets of the reals which is well ordered in type ω_2 .

Then suppose that $\varphi \colon \mathcal{M} \to \mathcal{B}$ is a monotone hull operation. Pick $H := \{x_{\alpha} \colon \alpha < \operatorname{non}(\mathcal{M})\} \notin \mathcal{M}$ and consider $B_{\alpha} := \varphi(\{x_{\beta} \colon \beta < \alpha\})$ for $\alpha < \operatorname{non}(\mathcal{M})$. Observe that the sequence $\{B_{\alpha} \colon \alpha < \operatorname{non}(\mathcal{M})\}$ of Borel sets cannot stabilise since in this case H would be contained in a meager set. But then we can select a strictly increasing subsequence of length ω_2 , a contradiction. Using Fact 1 and an argument analogous to the final part of the proof of Theorem 4 we obtain

Corollary 5. Let $\mathcal{J} \in {\mathbb{N} \otimes \mathbb{M}, \mathbb{M} \otimes \mathbb{N}}$. Consider a model obtained by adding either ω_2 Cohen reals or ω_2 random reals to a model satisfying CH. In this model there is no monotone Borel hull operation on \mathcal{J} .

On the other hand, we have the following positive result whose proof goes analogously as in the measure case.

Proposition 6. Assume that \mathfrak{I} is a σ -ideal with $\operatorname{cof}(\mathfrak{I}) = \operatorname{add}(\mathfrak{I})$ and let \mathfrak{H} be a fixed base of \mathfrak{I} . Then there exists a monotone \mathfrak{H} -hull operation on \mathfrak{I} .

Proof. Let $\{A_{\alpha} : \alpha < \operatorname{cof}(\mathfrak{I})\}$ be cofinal in \mathfrak{I} . By recursion, for every $\alpha < \operatorname{cof}(\mathfrak{I})$ pick $B_{\alpha} \in \mathfrak{H}$ such that $A_{\alpha} \cup \bigcup_{\beta < \alpha} B_{\beta} \subseteq B_{\alpha}$. Then $\{B_{\alpha} : \alpha < \operatorname{cof}(\mathfrak{I})\}$ is a cofinal increasing sequence of sets in \mathfrak{H} . For each $I \in \mathfrak{I}$ define $\varphi(I)$ as $B_{\alpha_{I}}$ where $\alpha_{I} < \operatorname{cof}(\mathfrak{I})$ is the minimal index with $I \subseteq B_{\alpha_{I}}$. Then $\varphi : \mathfrak{I} \to \mathfrak{H}$ satisfies the assertion.

If a σ -ideal I has a base consisting of Borel sets then cof(I) = add(I) follows from CH. We have the following corollaries.

Corollary 7. Assume $cof(\mathcal{M}) = add(\mathcal{M})$. Then there exists a monotone \mathcal{F}_{σ} hull operation on \mathcal{M} . **Corollary 8.** Let $\mathcal{I} \in \{\mathcal{N} \otimes \mathcal{M} \mid \mathcal{M} \otimes \mathcal{N}\}$ and assume that $cof(\mathcal{I}) = add(\mathcal{I})$. Then

Corollary 8. Let $\mathfrak{I} \in {\mathbb{N} \otimes \mathbb{M}, \mathbb{M} \otimes \mathbb{N}}$ and assume that $cof(\mathfrak{I}) = add(\mathfrak{I})$. Then there exists a monotone $\mathfrak{F}_{\sigma} \sqcup \mathfrak{G}_{\delta}$ -hull operation on \mathfrak{I} .

Note that

$$cof(\mathcal{N} \otimes \mathcal{M}) = cof(\mathcal{N}), \quad add(\mathcal{N} \otimes \mathcal{M}) = add(\mathcal{N}), cof(\mathcal{M} \otimes \mathcal{N}) = cof([\mathbb{R}]^{\leq \omega}), add(\mathcal{M} \otimes \mathcal{N}) = add([\mathbb{R}]^{\leq \omega}) = \omega_1.$$

This is due to Cichoń and Pawlikowski, 1986.

Monotone Borel hull operations on σ -algebras

Now, we consider a measurable space with negligibles (X, S, \mathcal{I}) . We ask about the existence of monotone \mathcal{H} -hull operations on $\mathcal{P}(X)$ and S for some good subfamilies \mathcal{H} of S.

Observe that if there exist a monotone S-hull operation on $\mathcal{P}(X)$ and a monotone \mathcal{H} -hull operation on S, then their composition is a monotone \mathcal{H} -hull operation on $\mathcal{P}(X)$.

Hence by Fact 2 it follows that, for triples

 $(\mathbb{R},\mathcal{K},\mathcal{M})\,,\;\;\left(\mathbb{R}^2,\mathcal{B} riangleq\left(\mathcal{N}\otimes\mathcal{M}
ight),\mathcal{N}\otimes\mathcal{M}
ight),\;\;\left(\mathbb{R}^2,\mathcal{B} riangleq\left(\mathcal{M}\otimes\mathcal{N}
ight),\mathcal{M}\otimes\mathcal{N}
ight),$

the existence of a monotone \mathcal{H} -hull operation on $\mathcal{P}(\mathbb{R})$ (or $\mathcal{P}(\mathbb{R}^2)$) is equivalent to the existence of a monotone \mathcal{H} -hull operation on \mathcal{K} (or $\mathcal{B} \bigtriangleup \mathcal{I}$ with $\mathcal{I} \in \{\mathcal{N} \otimes \mathcal{M}, \mathcal{M} \otimes \mathcal{N}\}$). For $(\mathbb{R}, \mathcal{L}, \mathcal{N})$ this was observed by Elekes and Máthé.

Theorem 9. Let $\mathcal{H} \subseteq \mathcal{P}(X)$ be a finitely additive and countably multiplicative family with $|\mathcal{H}| \leq \omega_1$, $\mathcal{H}_c \subseteq \mathcal{H}_\sigma$, and let $\mathcal{I} \subseteq \mathcal{P}(X)$ be a σ -ideal such that $\mathcal{S} := \mathcal{H} \bigtriangleup \mathcal{I}$ forms a σ -algebra. If \mathcal{I} has a base of sets in \mathcal{H} , then there exists a monotone $\mathcal{H}_{c\delta\sigma}$ -hull operation on \mathcal{S} .

Corollary 10. Let $\mathfrak{H} \subseteq \mathfrak{P}(X)$ be a σ -algebra with $|\mathfrak{H}| \leq \omega_1$, and let $\mathfrak{I} \subseteq \mathfrak{P}(X)$ be a σ -ideal. If \mathfrak{I} has a base of sets in \mathfrak{H} , then there exists a monotone \mathfrak{H} -hull operation on $\mathfrak{H} \bigtriangleup \mathfrak{I}$.

This corollary applied, **under CH**, with $\mathcal{H} := \mathcal{B}$ to \mathcal{N} , \mathcal{M} and to the Mendez ideals, yields the respective monotone \mathcal{B} -hull operations. However, we want to obtain these operations with values in possibly low Borel classes.

Theorem 9 can be applied to $\mathcal{N}\otimes\mathcal{M}$ and $\mathcal{M}\otimes\mathcal{N}$ with $\mathcal{H}:=F_{\sigma\delta}$. Hence we have

Theorem 11 (CH). If $\mathcal{I} \in {\mathbb{N} \otimes \mathbb{M}, \mathbb{M} \otimes \mathbb{N}}$, then there exists a monotone $\mathcal{G}_{\delta\sigma\delta\sigma}$ -hull operation on $\mathbb{B} \bigtriangleup \mathcal{I}$ (on $\mathcal{P}(\mathbb{R}^2)$).

Note that Theorem 9 applied to $\mathcal{I} := \mathcal{N}$ and $\mathcal{H} := \mathcal{G}_{\delta}$ yields a monotone $\mathcal{F}_{\sigma\delta\sigma}$ -hull on \mathcal{L} , under CH [Elekes and Máthé].

In the category case we have

Theorem 12 (CH). There exists a monotone $\mathfrak{G}_{\delta\sigma}$ -hull operation on \mathfrak{K} (on $\mathfrak{P}(\mathbb{R})$).

References

1. M. Elekes, A. Máthé, Can we assign the Borel hulls in a monotone way? Fund. Math. 205 (2009), 105–115.

2. **M. Balcerzak, T. Filipczak**, *On monotone hull operations*, Math. Log. Quart, (2011), accepted.